The alpha60 results data documentation
{
// Version number for data migration and feature checks
"data-version": "20191004",
// Date range of the sample duration
"duration": "2017-10-27-to-2017-12-31",
// Media object name
"collection-name": "Stranger Things",
// Media object season or episode number
"collection-id": "2",
// Number of BTIH in BTIHA
"btiha-size": 274,
// Number of unique peers found
"upeers-total": 33765789,
// Number of unique seeds found
"useeds-total": 13814398,
// Number of peers that have IP addresses that cannot be resolved to a geo Country, geo Region, or geo City
// (and as a percentage of upeers-total, above)
"anomaly-total": 625848,
"anomaly-percentage": "1.85"
},
// Summary of BTIHA, each all BTIH are unique.
// (Ie, if t002 and t134 have the same BTIH, a synthetic t275 torrent will be created that combine the upeers of
// t002 with the upeers of t134 and remove any duplicates.
"collection-unique-btiha": {
// Number of unique BTIH in UBTIHA. If BTIHA is unique, call it a Unique BTIHA, or UBTIHA
"btiha-size": 209,
// Number of unique peers, seeds, and anomalies (as above)
"upeers-total": 20555123,
"useeds-total": 9632217,
"anomaly-total": 241874,
"anomaly-percentage": "1.18"
},
// Unit of measure for network transfer
"transfer-units": "terabyte",
// Total network transfer size of the duration of the sample.
// Assume every unique peer downloaded all the files in the torrent to completion once.
"transfer-size": 43089.66182721779,
// Given transfer-size above, price cost of bandwidth on AWS
"transfer-cost": "",
// Ordered array of different geographic groups, descending by percentage of upeers.
// Groups are three longitude regions (aka “slices”):
// AfroEurAsia -30 to 60
// AsiaPacifica 60 to 180.0
// Americas -175.0 to -30
"geo-slices-3-longitude-regions": [
{
// Highest rank slice #1, with 43% of all upeers
"number": 1,
"name": "AfroEurAsia",
"total-percentage-upeers": "43.93"
},
// Second rank slice #2, with 30% of all upeers
{
"number": 2,
"name": "AsiaPacifica",
"total-percentage-upeers": "30.11"
},
// Third rank slice #3, with 25% of all upeers
{
"number": 3,
"name": "Americas",
"total-percentage-upeers": "25.96"
}
],
// Ordered array of different geographic groups, descending by percentage of upeers.
// Group by Country, where
// country-code is ISO Alpha-3 Numeric Country Code from MaxMind’s geolocation database
// country-name is the name of the country from MaxMind’s geolocation database
"geo-country-top-10": [
{
// Largest percentage of upeers comes from USA with 11%
"number": 1,
"country-code": "USA",
"country-name": "United States of America",
"total-percentage-upeers": "11.81",
"upeers-total": 2428213
},
... to. ...
// 9th largest percentage of upeers comes from France with 2%
{
"number": 10,
"country-code": "FRA",
"country-name": "France",
"total-percentage-upeers": "2.02",
"upeers-total": 414909
}
],
// Ordered array of different geographic groups, descending by percentage of upeers.
// Group by Country AND City AND Region or Region Code
"geo-country-region-city-top-30": [
{
// Largest percentage of upeers comes from no known region or city of the USA (aka, rural or uknown)
"number": 1,
"country-code": "USA",
"country-name": "United States of America",
"total-percentage-upeers": "2.98",
"upeers-total": 612502
},
... to. ...
// 30th largest percentage of upeers comes from the Manila suburb of Quezon City, Philippines with 0.37%
{
"number": 30,
"country-code": "PHL",
"country-name": "Philippines, Quezon City, F2",
"total-percentage-upeers": "0.37",
"upeers-total": 75619
}
]
}